項目位于山東省青島市市北區的某住宅小區,由徐鵬飛先生作為私人業主獨立申請,系統裝機容量2KW,共使用4塊240Wp多晶硅光伏組件和5塊230Wp多晶硅光伏組件和一臺2KW逆變器,組件由上海羲和能源科技有限公司提供,逆變部分由深圳晶福源電子技術有限公司提供。該項目采用“自發自用,余電上網”模式,通過2塊電表分別計量用戶使用電量及光伏發電量,并網當日光伏發電8.5kWh。
《意見》實施以來,各地電網企業按照“支持、歡迎、服務”的整體要求,積極受理分布式光伏并網的申請。國網青島分公司首開先河,率先完成了該家用屋頂項目從項目申請、項目審批到并網接入等手續,并提供了全面而細致的支持服務,僅用19天即完成了系統的并網發電。分公司相關領導多次到現場指導工作,為并網的順利進行提供了保障。
家用光伏系統在歐美等國家已經相當普及,擁有較完善的相應支持政策,是出口光伏產品的主要終端形態。隨著《意見》的實施,國務院常務會議對光伏發展的積極表態,以及一系列利好政策的相繼出臺,國內市場需求初露端倪。首例家用光伏系統的成功并網,或可成為國內中小型光伏系統市場啟動的開端。逆變器供應商晶福源的田源思經理表示:單體安裝量在5KW以下的家用光伏系統已經在澳洲、歐洲有大量的應用案例,技術成熟;而在國內,此前的應用一直受限于相應政策不配套,無法推進。這次家用光伏系統能夠成功通過驗收和并網接入,無疑讓因受歐美雙反打擊而低迷的光伏市場打開了一扇天窗。
探討分布式光伏接入對配電網系統的影響北極星智能電網在線 2012-12-24 11:26:53 我要投稿關鍵詞: 配電網變壓器電壓調節器北極星智能電網在線訊:1.對電壓的影響
集中供電的配電網一般呈輻射狀。穩態運行狀態下,電壓沿饋線潮流方向逐漸降低。接入光伏電源后,由于饋線上的傳輸功率減少,使沿饋線各負荷節點處的電壓被抬高,可能導致一些負荷節點的電壓偏移超標,其電壓被抬高多少與接入光伏電源的位置及總容量大小密切相關。通常情況下,可通過在中低壓配電網絡中設置有載調壓變壓器和電壓調節器等調壓設備,將負荷節點的電壓偏移控制在符合規定的范圍內。對于配電網的電壓調整,合理設置光伏電源的運行方式很重要。在午間陽光充足時,光伏電源出力通常較大,若線路輕載,光伏電源將明顯抬高接入點的電壓。如果接入點是在饋電線路的末端,接入點的電壓很可能會越過上限,這時必須合理設置光伏電源的運行方式,如規定光伏電源必須參與調壓,吸收線路中多余的無功。在夜間重負荷時間段,光伏電源通常無出力,但仍可提供無功出力,改善線路的電壓質量。光伏電源對電壓的影響還體現在可能造成電壓的波動和閃變。由于光伏電源的出力隨入射的太陽輻照度而變,可能會造成局部配電線路的電壓波動和閃變,若跟負荷改變疊加在一起,將會引起更大的電壓波動和閃變。雖然目前實際運行的光伏電源并沒引起顯著的電壓波動和閃變,但當大量并網光伏電源接入時,對接入位置和容量進行合理的規劃依然很重要。
2.對短路電流的貢獻
通常認為在配電網絡側發生短路時,接入到配電網絡中的光伏電源對短路電流貢獻不大,穩態短路電流一般只比光伏電源額定輸出電流大10%~20%,短路瞬間的電流峰值跟光伏電源逆變器自身的儲能元件和輸出控制性能有關。在配電網絡中,短路保護一般采用過流保護加熔斷保護。對于高滲透率的光伏電源,饋電線路上發生短路故障時,可能由于光伏電源提供絕大部分的短路電流而導致饋電線路無法檢測出短路故障。1999年,IEA-PVPS-Task-5(國際能源署中的光伏技術工作組)在日本曾用4個不同廠家控制電流注入的逆變器連接到一個配電網上的柱式變壓器,然后在變壓器另一側進行短路試驗。試驗表明,短路電流上升不超過故障前的2倍,1~2個周波就隔離了故障。此外,日本還對一個200kWp的光伏電源系統進行短路試驗,研究發現:短路電流經過變壓器后,電流變小,變壓器過流保護不動作。2003年,美國的NERL(美國可再生能源國家實驗室)曾做過關于分布式發電與配電網絡之間的交互影響的研究。采用以逆變器方式接入的分布式電源,仿真原型建立在13.2kV的中壓配電網絡上,分布式電源的容量是5MW,研究重點是熔斷保護特性。結果表明,當發生單相和三相故障時,以逆變器方式接入的分布式電源對短路電流的貢獻很小,短路電流主要來自主網,甚至比5MW感應電機提供的短路電流還要小的多。因此,可以得出以控制電流注入的光伏電源逆變器對短路電流貢獻不大的結論.
3.非正常孤島
隨著在配電網絡中有越來越多的分布式電源接入,出現非正常孤島的可能性也越來越大,IEC在1998年曾用“故障樹理論”分析非正常孤島發生后發生觸電的可能性。2002年,IEA-PVPS-Task-5曾用“故障樹理論”分析光伏電源的非正常孤島。在考慮光伏電源滲透率達6倍夜間負荷的極端情形下,發現非正常孤島導致觸電的可能性很小,概率小于10-9次/年。因此,只要管理得當,加上光伏電源逆變器自身帶有反孤島功能,大量光伏電源的接入并不會給系統增加實質性的觸電風險。同時,對荷蘭地區一個典型低電壓住宅區的配電網絡就光伏電源系統發生孤島的可能性進行研究,發現該區光伏電源發生非正常孤島運行的可能性低于10-5~10-6次/年,幾乎為零。因此,認為在住宅區大量接入光伏電源導致發生非正常孤島的可能性很小。2006年,DISPOWER對在德國使用的帶檢測電網阻抗變化的反孤島策略及電網電壓和頻率監控的光伏電源逆變器進行了測試,結果表明當電網在一般低阻抗情況下運行時,效果理想;當電網在高阻抗不理想的情況下運行時,光伏電源逆變器檢測電網阻抗變化精確度比較差,目前還沒有很好的解決方案來滿足德國對光伏電源反孤島策略的標準要求。近年來,大量研究結論表明:即使將來有大量分布式電源接入到配電網中,只要措施得當,發生非正常孤島的風險可控制在合理的范圍內,并不會使系統發生非正常孤島風險的可能性有實質性增加,因而發生非正常孤島不會成為妨礙光伏電源等分布式電源接入的一個技術壁壘。
4.注入電流諧波
電流諧波對配電網絡和用戶的影響范圍很大,通常包含改變電壓平均值、造成電壓閃變、導致旋轉電機及發電機發熱、變壓器發熱和磁通飽和、造成保護系統誤動作、對通信系統產生電磁干擾和系統噪音等。光伏電源逆變器產生的諧波來源主要有2個:50Hz參考基波波形不好產生的諧波和高頻開關產生的諧波。諧波之間的相位差、配電網的線路阻抗以及負荷都能消除部分諧波。當光伏電源逆變器生成正弦基波時,可以部分補償配電網的電壓波形畸變,但會使逆變器輸出更多的電流諧波,把光伏電源逆變器接入到弱電網時就會明顯出現上述現象。當光伏電源逆變器檢測配電網電壓來生成參考基波時,光伏電源逆變器可以輸出很好的正弦波電流,但是無法補償配電網的電壓波形畸變。1998年,IEA-PVPS-Task-5曾經對丹麥的一個80%家庭都安裝有光伏電源的住宅區進行測試,發現光伏電源對當地的諧波貢獻有限,還不如家用電器造成的諧波多。因此,研究者認為:對于具有相對較高短路容量的饋電線路和局部高滲透率的光伏電源接入的情況,均有此普遍現象。1999年,IEA-PVPS-Task-5曾在日本對多光伏電源接入到同一配電變壓器(住宅區柱式變壓器)中的諧波進行測試,使用了多個廠家和多個型號的逆變器。測試結果表明,同類型的逆變器(內在電路和控制策略一致)會造成特定次數的諧波疊加,不同類型的逆變器可會相互抵消諧波的注入。英國也在1999年做過類似的測試,測試結果表明:高次諧波衰減很快,低次諧波的變化情況比較復雜。在強網中諧波畸變一般是個常值,而弱網中的諧波畸變一般隨接入的光伏電源逆變器個數增加而加重。當饋電線路阻抗值較大時,可使諧波衰減明顯。為了防止特定次數的諧波產生振,有必要限制光伏電源逆變器的容量。在實際運行中,光伏電源注入的諧波電流一般都能符合相關標準的要求。
5.注入直流分量
直流分量主要對配電網中的變壓器、電流式漏電斷路器(RCD)、電流型變壓器、計量儀表等造成不利影響,其中對電流式漏電斷路器和變壓器的影響最為不利,如造成電流式漏電斷路器誤動作和造成變壓器磁通飽和、發熱、產生諧波和噪音等。現在,許多并網光伏電源逆變器都采用隔離變壓器來抑制直流分量的注入。有些國家明確規定要以帶隔離變壓器的方式接入,而有的國家并無此項強制性規定。但近十幾年來,由于技術的進步,去除隔離變壓器可帶來更高的效率并減少生產成本,不帶隔離變壓器的光伏電源逆變器應用越來越廣泛。采用脈寬調制(Pulse-widthmodulatim,PWM)技術的光伏電源逆變器可以抑制直流分量輸出,但是當配電網電壓含不平衡的正序和負序分量時,會對采用PWM技術的光伏電源逆變器的性能造成不利影響。關于直流分量對配電網變壓器的影響,國際上目前對直流分量上限還沒有統一的規定。英國的研究建議是每相不超過等同于5%的諧波畸變值,或者是每個光伏電源注入到典型的500kVA配電網變壓器的直流分量不能超過40mA。美國的規定是不超過每相電流有名值的0.5%。
6.對配電網絡設計、規劃和營運的影響
隨著越來越多的分布式電源接入到配電網絡中,集中式發電所占比例將有所下降,電力網絡的結構和控制方式可能會發生很大的改變,這種改變帶來的挑戰和機遇將要求電力網絡從設計、規劃、營運和控制等各方面進行升級換代。在可以預見的將來,大量被消費的電能將來自于低壓配電網絡,提前對配電網絡的結構進行升級換代和優化顯得尤為重要,例如如何使配電網絡的結構適應網絡電流的逆向和正向的流動。另外,大量分布式光伏電源接入到配電網中后,用戶側可以主動參與能量管理和運營,使傳統配電網運營費用模型不再適用。因此,一方面面臨電力市場自由化和解除管制的壓力,一方面可再生能源諸如光伏電源卻得到保護和補貼,使得配電網在保證供電質量和可靠性方面面臨越來越大的壓力。近些年,一些專家學者提出了模擬電站和微網概念,可運用到分布式光伏電源管理中,把有功出力具有隨機性的光伏電源和具有保證出力的電源以及儲能裝置集成在一起,作為整體的模擬電站或者微網,整合到當今的電力生產和傳輸框架內。
7.提供輔助功能
現代光伏電源逆變器可提供多種功能,如將光伏陣列出力饋送到電網以及作為有源濾波器改善電網電能質量等。光伏電源和儲能裝置有效結合后,可以參與到配電網的電壓調節、頻率調節和穩定性調節,為重要負荷提供UPS功能。如在光伏電源逆變器的直流側配備儲能裝置(如蓄電池和雙層電容等),當光伏電源逆變器饋送有功出力到電網時,還可以參與配電網的電壓和頻率調節,在配電網電壓和頻率跌落時,增加有功出力,當配電網三相電壓不平衡時,光伏電源逆變器可針對性地送出三相不平衡電流,部分補償配電網三相電壓不平衡,吸收饋電線路多余的部分無功或者輸送饋電線路缺乏的部分無功。另外,光伏電源還可驅動水泵進行抽水儲能,為電網提供黑啟動電源等。
8.結語
分布式發電技術作為新一代發電技術,其發展上升的勢頭不可阻擋,配電網的設計、規劃、營運和控制都要升級換代來適應分布式發電的發展。光伏電源是分布式發電技術中發展最迅速的部分,將有越來越多的分布式光伏電源接入到配電網中。因此,有必要深入開展其對配電網影響的研究。根據研究結果,應用新的技術,制定相應的管理措施,才能使大量分布式電源接入配電網后能夠安全穩定運行。