1引言
目前,我國絕大部分礦井提升機(超過70%)采用傳統的交流提升機電控系統(tkd-a為代表)。tkd控制系統是由繼電器邏輯電路、大型空氣接觸器、測速發電機等組成的有觸點控制系統。經過多年的發展,tkd-a系列提升機電控系統雖然已經形成了自己的特點,然而其不足之處也顯而易見,它的電氣線路過于復雜化,系統中間繼電器、電氣接點、電氣聯線多,造成提升機因電氣故障停車事故不斷發生。采用plc技術的新型電控系統都已較成功的應用于礦井提升實踐,并取得了較好的運行經驗,克服了傳統電控系統的缺陷,代表著交流礦井提升機電控技術發展的趨勢。
2總體設計方案
基于plc技術的礦井交流提升機電控系統控制電路組成結構如圖1所示,要由以下5部分組成:高壓主電路(包括高壓換向器、電動機、啟動柜、動力制動電源)、主控plc電路、提升行程檢測與顯示電路、提升速度檢測、提升信號電路,其中高壓主電路部分仍采用傳統的繼電器控制電路。
工作過程:當井口或井底通過信號通信電路發出開車信號后,開車條件具備。司機將制動手柄向前推離緊閘位置,主電動機松閘。司機將主令控制器的操作手柄推向正向(或反向)極端位置,主控plc通過程序控制高壓換向器首先得電,使高壓信號送入主電動機定子繞組,主電動機接入全部轉子電阻啟動,然后依次切除8段電阻,實現自動加速,最后運行在自然機械特性上。交流提升機運行時,旋轉編碼器跟隨主電動機轉動,輸出2列a/b相脈沖,分別接到主控plc的高速計數器hsc0的a/b相脈沖輸入端,由主控 plc根據a/b脈沖的相位關系,自動確定hsc0的加、減計數方式。根據hsc0的計數值,就可以計算出提升行程并顯示。同時只根據旋轉編碼器輸出的a 相脈沖,主控plc進行加計數。根據hsc1在恒定間隔時間內的計數值,就可以計算出提升速度。
3硬件設計
3.1提升機主回路部分設計
主回路用于供給提升電動機電源,實現失壓、過流保護,控制電機的轉向和調節轉速。主回路由高壓開關柜、高壓換向器的常開觸頭、動力制動接觸器的常開主觸頭、動力制動電源裝置、提升電動機、電機轉子電阻、加速接觸器的常開主觸頭(1jc~8jc)和裝在司機操作臺上的指示電流表和電壓表等組成。系統原理圖如圖2所示。
主拖動電機選擇:鼠籠式異步電動機盡管結構簡單、價格便宜、維護方便,但很難滿足提升機啟動和調速性能的要求,因此,礦井提升機交流拖動系統均選用繞線式異步電動機作為主拖動電動機,繞線式異步電動機轉子串電阻后能限制啟動電流和提高啟動轉矩,并能在一定范圍內進行調速。地面變電所送來的二路6kv電源,一路工作,一路備用,經tgg-6型高壓開關柜的隔離開關glk1、油開關gyd、高壓換向器線路接觸器xlc的主觸頭、正向(或反向)接觸器zc(或fc)后到主電機的定子。在高壓開關柜內還設有電壓互感器yh,失壓服扣線圈syq,電流互感器lh和過流脫扣線圈glq,用于失壓或過流保護。在syq線圈回路中還串聯接有緊急停車開關jtk1和換向器室欄柵門閉鎖開關lsk。
3.2制動回路設計
礦井提升機大多數采用繞線式異步電動機來拖動,且多數場合下采用有級切換轉子回路電阻來實現調速。其制動系統多采用可控硅動力制動和可調閘制動系統。前者為電氣制動,后者為機械制動。提升機在減速段運行中,當速度在0~5%范圍內,電氣制動起作用,可調閘不起作用;當超速在 5%~10%范圍內,電氣制動限幅,并維持最大制動功率,同時可調閘起作用,總制動力矩增大;當超速10%時,過速繼電器gsj1作用于安全回路,可調閘將提升機滾筒閘住。
晶閘管動力電源裝置主要有兩部分組成,一部分為主回路,另一部分為觸發回路。本文設計中采用kzg型三相可控硅動力制動系統。此系統為單閉環動力制動系統,系統方框圖如圖3所示,從圖中可以看出速度偏差控制和腳踏控制是“或”的關系,哪個信號大,就允許哪個信號通過,亦即相應的控制方式發揮作用。因此,單閉環控制時司機可以腳踏制動進行控制,而在腳踏控制時,如提升機超速,閉環系統又可起監視保護作用。
[$page] 3.3速度給定回路
速度給定方式就是按行程原則產生速度給定信號。在礦井提升機電控系統中,通常是采用凸輪板給定方法,即由凸輪板控制自整角機的輸出電壓。由于自整角機沒有可滑動的觸點,因此電壓變化較平穩,工作較